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It is a well-known observation in fluidization technology, axial filters and the blood 
microcirculation that the discharge concentration of a particulate suspension 
through a small circular side pore which is fed by a large main tube can be 
significantly lower than the feed concentration. Two underlying mechanisms are 
believed to be responsible for this exit concentration defect : the fluid skimming from 
the particle-free layer at the main tube wall and the particle screening due to the 
hydrodynamic interaction with the pore entrance. I n  this paper we shall focus our 
attention only on the first mechanism and shall present a theory which relates the 
discharge concentration to  the dimensionless volume discharge rate 2nQ through the 
side pore (scaled to the wall shear rate in the main tube and the pore radius) and the 
ratio of the particle to  pore entrance diameters, under creeping flow conditions and 
for small particle concentrations. First, the shape of the capture tube cross-section 
upstream of the pore is computed on the basis of a simplified three-dimensional 
velocity field which neglects the disturbance produced by the orifice on the incoming 
shear flow. Surprisingly simple closed-form expressions for this shape are derived as 
Q +  00 or as Q + O .  Also, using a recently developed exact solution for the simple 
shear flow past an orifice (Davis 1991), we are able to rigorously demonstrate that, 
even for small Q ,  the disturbance produced by the orifice on the shear flow has only 
a minor effect on the capture tube cross-section far upstream. This simplified flow 
field is then used to construct a three-dimensional theory for the discharge 
concentration defect due to pure fluid skimming for a dilute suspension of spheres. 
The qualitative features of the theoretical predictions show the same trends as the 
experimental observations in the microcirculation, although the limits of this theory 
are well below the observed hematocrit concentrations and the particles are taken as 
rigid spheres. 

1. Introduction 
The problem of particle entrainment from a shear layer flowing past a solid 

boundary containing small pores has important application in fluidization tech- 
nology, axial flow filters and the microcirculatory behaviour involving the 
distribution of the cellular components of blood. The primary motivation for the 
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present study was the well-known observation (Cokelet 1976 ; Chien. Usami & Skalak 
1984; Gaehtgens & Papenfuss 1979; Lipowsky 1986; Pries, Ley & Gaehtgens 1986) 
that, in microvessels having diameters smaller than approximately 30 pm, the 
discharge hematocrit H ,  (volume fraction of red cells in a plasma suspension) could 
be significantly less than the feed reservoir hematocrit H ,  and could vary 
substantially with the shear flow rate. This behaviour has been attributed to two 
phenomena: (i) plasma skimming from the cell-free layer a t  the wall of the feeding 
vessel and (ii) particle screening due to the hydrodynamic interaction of the cells with 
the pore entrance geometry. These same phenomena occur more generally in a host 
of other applications where a suspension flowing under shear is being drained at a 
solid boundary with pores. Apparently though, no theoretical framework at  present 
exists for elucidating quantitatively how the discharge concentration H ,  through the 
pores is related to the local shear in the upstream boundary layer, the volume 
discharge through the pore and the ratio of the particle diameter to that of the pore 
entrance. In  this paper a simplified three-dimensional theory will first be developed 
to describe the fluid capture tube upstream of the pore and this theory will then be 
applied to determine the discharge hematocrit defect of a dilute suspension of rigid 
spheres due to pure fluid skimming. Although the limits of this theory are below the 
hematocrit concentrations (10 to 40 YO) observed in the microcirculation, the 
qualitative features of the theoretical predictions show the saine trends as the 
experimental measurements. The additional contribution to the discharge hematocrit 
defect due to mechanism (ii), particle screening, will be examined in a companion 
study (Wu, Weinbaum & Acrivos 1991). 

In the applications mentioned above one is largely interested in the entrainment of 
particles of one to several tens of microns through pores of comparable dimensions, 
and hence, under these conditions, gravity is negligible compared to the 
hydrodynamic forces on the particles. Suppose then that the average fluid velocity 
in the main tube is U, the ratio of the pore radius c to the main tube radius b is /3 with 
p 6 1, and that the non-dimensional volumetric fluid flux into the pore is 2nQ (scaled 
with the wall shear rate in the main tube and the pore radius c). Then, we shall show 
through an asymptotic analysis that, if the velocity a t  a distance c from the main 
tube wall is of O(PU), and the average velocity in the pore is of O(PUQ), the height 
of the upstream capture tube will be O(Q;c) if Q > 1. In the microcirculation Q will 
typically lie in the range 0 < Q < 0.2, and in other applications Q could be as large 
as O(10) or more. Thus, for Q > 1, the velocity of the shear flow a t  the top of the 
capture tube will be O(Q;/3U) and the Reynolds number describing the flow in the 
capture tube will be O(Q;,PRe,) where Re, is the Reynolds number in the feed tube. 
Similarly, the Reynolds number for the flow through the pore will be O(QP2Re,). 
Thus, if /3 < 1 ,  the particle entrainment problem can be treated as a Stokes flow 
problem even if Q is of O( 10) a@ the Reynolds number of the main tube flow is large 
compared to unity. In  the microcirculation Re, < 1 and this res1,riction on p is not 
required. 

The Stokes flow approximation is an important simplification in that it enables us 
to treat the rather complicated three-dimensional flow geometry shown in figure 1 as 
the superposition of two simpler flows: (i) the axisymmetric suction flow from an 
otherwise quiescent half-space into a pore and (ii) the linear shear flow past the pore 
without suction. An infinite series solution to problem (i) was presented in Dagan, 
Weinbaum & Pfeffer (1982), who considered the more genera,l case of the flow 
between two infinite half-spaces connected by a finite-length pore. Two important 
simplifying features of this solution were ( a )  that the solutions in the half-space could 
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FIGURE 1. Geometry. 

be accurately approximated by Sampson’s solution (Sampson 1891 ; Happel & 
Brenner 1973) for the flow through a circular orifice in a plane wall except for the 
immediate vicinity of the orifice opening, and (b )  that, if the pore length were more 
than half the pore radius, the axial velocity profile in the plane of the opening could 
be approximated to four digits by the arithmetic mean of a Poiseuille and a Sampson 
profile. Problem (ii), which is the axisymmetric analogue of Takematsu’s (1966) two- 
dimensional solution for the shear flow past a slot in a plane wall, has recently been 
considered by Tutty (1988) as part of an accurate and detailed numerical solution for 
the shear flow past a long side-branch tube with suction. An important simplification 
noted in problem (ii) is that  the perturbation to the simple shear flow in the half- 
space is very small except in the immediate vicinity of the pore entrance, where the 
dividing streamline penetrates a small fraction of the pore radius into the side 
branch. Of course, if the slot were infinitely long, one would obtain an infinite 
sequence of decaying countercurrent eddies of equal aspect ratio (Moffatt 1964). The 
equivalent problem for the linear shear flow past an orifice in a plane wall has 
recently been solved by Davis (1991). This solution will be used herein to  show that 
although the transverse velocity disturbance due to the shear at the orifice entrance 
does not vanish as Q + O ,  its effect on the capture tube cross-sections far upstream 
is slight in the limit of small & and therefore can be ignored for all &. 

Tutty’s combined numerical solutions to  problems (i) and (ii) above are much too 
laborious to  easily use in the present study where the primary interest lies in 
determining the three-dimensional shape of the capture tube streamlines and the 
phase separation of the particles as they approach the pore entrance. Tutty’s 
solutions, however, provide a valuable standard by which the accuracy of the 
approximations used in the present study can be assessed and also suggest certain 
simplifying features for treating the combined problem. For example, these solutions 
indicate that the counter-rotating vortices in problem (ii) are much weaker than their 
two-dimensional counterparts and will be washed out of the side-branch tube 



4 2.-Y. Yun, A .  Acrivos and S.  Weinbaum 

entirely at very small suction velocities (Q 2 0.027). This critical value of Q for the 
disappearance of the side-branch vortices is significantly smaller than the 
physiological range for Q in the microcirculation cited earlier. As expected, it is found 
that the capture tube streamlines a t  upstream infinity form a two-dimensional 
cylinder whose cross-sectional shape depends on Q. Although, in general, the 
geometry of this cross-section is rather complicated, i t  will be shown via an 
asymptotic analysis that, in the limits of high and of low Q, the shapes of the 
corresponding capture tube cross-sections assume distinct forms which can be 
described by means of simple analytic expressions. 

In $2 we shall propose a simple expression for the flow treated by Tutty (1988) in 
which the fluid velocity is represented as a linear combination of a simple shear flow 
and a Sampson flow. The streamlines and capture tube boundaries for the fluid were 
then calculated by numerically integrating relatively simple ordinary differential 
equations in three dimensions. Even so, comparison with Tutty’s accurate numerical 
solution shows that this much simpler velocity profile leads to streamline shapes and 
upstream capture tube geometries which agree remarkably well with the exact 
solution except in the immediate vicinity of the pore entrance. Furthermore, for the 
two limiting cases of very small or very large side-branch fluxes. the differential 
equations can be integrated analytically to provide closed-form expressions for the 
asymptotic far-field streamlines and entrainment tube shapes in the upstream shear 
flow. In  turn, these approximate asymptotic solutions in $ 3  lead to a greatly 
simplified analysis of the plasma skimming effect, which is examined in $4. 

The most important limitation of this simplified model for the basic flow is that it 
neglects the transverse velocity a t  the mouth of a pore of finite length. Yet i t  is 
known from the analysis of Sobey (1977) and of Tutty (1988) that the deviation of 
the local wall shear in the main tube from that exerted by the linear flow depends 
only on this transverse velocity component, in contrast to the wall pressure 
distribution, which is related only to the normal velocity component a t  the pore 
opening. Thus, for a Sampson flow in which the transverse velocity Component a t  the 
pore opening vanishes, the dividing streamline for the capture tube must attach to 
the wall a t  the edge of the pore. Although such a non-zero transverse velocity has 
little influence on the geometry of the upstream capture tube, it does affect the locus 
of the attachment boundary defined by the contours of zero wall shear stress in the 
main flow direction. The numerical solutions in Tutty’s paper show, however, that 
attachment occurs very close to the edge provided Q is of O(1) or smaller. For larger 
values of Q we shall derive in $ 5  a simple closed-form expression for the wall shear 
distribution in the vicinity of the pore entrance, which can be conveniently used to 
predict the attachment boundary contours without the need of numerical procedures. 
Such contours are of special interest in exploring the relationship between the 
topological distribution of the wall shear stress and the localization of atherosclerotic 
lesions in the vicinity of the entrance of the arterial branches of the aorta as observed 
by Cornhill &, Roach (1976) and discussed by Tutty (1988). 

A brief discussion of the qualitative features of plasma skimming as they relate to 
the defect in the discharge hematocrit H ,  is given in $6;  while a more detailed 
presentation of the biological applications of this study is presented in Yan, Acrivos & 
Weinbaum (1991). 
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2. Simplified model for the fluid streamlines and the fluid capture tube 
We wish to construct a simplified mathematical description for the velocity in the 

flow geometry depicted in figure 1, which is representative of a channel flow with 
non-interacting pores, an axial flow filter, or a tube flow where the radius b of the 
feeding vessel is large compared to the radius c of the circular orifice or side branch 
so that the curvature of the former may be neglected. The origin of the coordinate 
system is taken a t  the centre of the pore opening and the z-axis points upward along 
the pore axis (figure 1). Cartesian (2, y, z )  and cylindrical coordinates (R,cp, z )  will be 
used alternatively for mathematical convenience. The flow along the wall far from 
the pore opening consists of a simple shear flow in the x-direction whose shear rate 
is taken as unity. All other quantities are non-dimensionalized with respect to  this 
shear rate and the pore radius and, if the dimensional volume flow through the side 
branch is of O(Qc2/3PU), then, as shown in the introduction, the Stokes flow equations 
will be valid throughout the flow region of interest, even if Q % 1, as long as the 
Reynolds number in the capture tube, which is O(Qi/32Re,), is + 1. Moreover, since 
according to the solution in Dagan et al. (1982), the streamlines for the axisymmetric 
Stokes flow into the pore differ from those of a Sampson flow through a circular 
orifice only in the immediate vicinity of the pore opening and since Tutty's (1988) 
solution for a simple shear flow past a circular pore with no suction produces only a 
very weak counter-rotating vortex flow within the side branch, it seems reasonable 
to expect that, to a good approximation, the velocity field could be represented as 
a superposition of a Sampson flow and a simple shear flow. This superposition should 
describe the flow accurately everywhere within the upper half-space, even in the limit 
Q < 1, as will be shown in $3.3.  This simplified velocity field, with the Sampson flow 
denoted by the superscript s, is given by 

where 

with 2ltQ being the volumetric fluid flux into the pore, and 

R = (x2+y2);, 5 = [l -a(R,-Rl)2]i, 

R, = [z2 + (R- l)'];, 

In addition, the fluid streamlines satisfy 

R, = [z2 + (R + 1)']3". 

dx V, dy V dz V ,  
ds V '  d s = $ '  ds V '  

_ -  - - _- -  - - (3) 

where V = (v",+ c+ V$ and s is the arclength along the streamline. Although the 
streamline equations (3) are too difficult to integrate analytically for the general case, 
we shall see in the next section that closed-form analytic results can be obtained for 
the limiting cases where Q is either very large or very small. 

Of special interest are the dividing streamlines. For the flow represented by (1)  
these streamlines must terminate at the pore edge, z = 0 and R = 1, since the 



6 Z.-Y. Yan, A .  Acrivos and S. Weinbaum 

z 1.0 

0.5 

3.0 

2.5 

2.0 

z 1.5 

1 .o 

0.5 

- 3  -2  - 1  0 1 2 3 

FIGURE 2. Comparison of the streamlines in the y = 0 plane (solid lines, our simplified model 
Y 

using (2) and (3) ;  symbols. Tutty 1988) ( a )  Q = 0.11; ( b )  Q = 2 .  

Sampson flow is symmetric about the plane z = 0 and thus cannot produce a wall 
shear to negate that of the incoming simple shear flow (V, = z ) .  These streamlines 
form a fluid capture tube within which the fluid phase is sucked into the pore. To find 
the upstream shape of this capture tube for an arbitrary value of Q, (3) was 
integrated numerically along the dividing streamline starting from the pore edge 
using a fourth-order Runge-Kutta technique. In practice, the numerical integration 
procedure was begun a t  a negligible distance from the exact edge, z = 0 and R = 1, 
to avoid the singularity in the flow field at this point. Numerical tests showed that 
this manoeuvre produced no perceptible errors in the capture tube shape. To obtain 
the desired accuracy, the step lengths were varied from in the vicinity of the 
pore edge to lop2 in the region far upstream. This provided an upstream capture tube 
cross-section which was accurate at least to order 

The numerical integrations just  described wcre performed for values of Q in the 
range of lop3 to lo3. Figure 2 shows the streamline patterns in the symmetry plane 
y = 0 for Q = 0.11 and 2.0. where it should be noted that Q = 0.11 lies in the middle 
of the physiological range of this parameter in the microcirculation. Also plotted in 
this figure are Tutty's exact numerical results. One observes that, at Q = 2, the two 
streamline patterns are nearly idcntical everywhere except near the downstream 
attachment point where, according to the exact solution. the flow attaches to the 
wall a short distance downstream of the edge. For larger values of Q which are not 
shown, this attachment point moves further downstream and the deviation from the 
exact solution will become larger. In 95 an approximate theory will be presented to 
determine the attachment point on the downstream wall for these larger values of Q. 
On the other hand, for Q = 0.11 larger deviations in the streamline behaviour are 
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FIGURE 3. Comparison of our fluid capture tube cross-section shapes at 5 = - 3  (solid lines) 
with Tutty’s results (symbols). 

observed directly over the pore, but on either side of the pore and within the 
symmetry plane the streamlines of our approximate model and those of the exact 
solution are nearly indistinguishable. 

In  figure 3 the capture tube cross-sections at an upstream location (z = -3) are 
compared with Tutty’s exact numerical solutions. Again, the agreement is almost 
perfcct except for the location of the wall attachment point. This discrepancy again 
arises from the fact that a Sampson flow does not generate a transverse velocity in 
the plane of the pore opening and thus gives rise to an inaccurate upstream 
attachment point. A surprising observation is that even for the smallest value of Q 
shown, 0.005, the upstream capture tube shapes as obtained from the two solutions 
are in remarkably good agreement even though, for this value of Q, the exact solution 
(see Tutty’s figure 5) shows that a large primary vortex exists in the side-branch pore 
and that the normal velocity profile deviates significantly from the Sampson 
solution. This good agreement will be explained in the next section using an 
asymptotic analysis that  is valid for Q < 1 .  

We further wish to note that the capture tube cross-sections in figure 3 illustrate 
two fundamentally different shapes for Q > 2 and Q < 1. Specifically, in the low- 
Q limit, the tubes are nearly two-dimensional elliptic cylinders whose width is nearly 
the same as the pore diameter, whereas, for the large values of Q, the cross-section 
extends far beyond the boundaries of the pore. The asymptotic analysis in the next 
section will provide additional insight into this intriguing difference. 

3. Asymptotic solutions 
Although the complicated form of the velocity field, as given by (2), precludes the 

analytical determination of the streamlines and in particular of the shape of the 
capture tube a t  upstream infinity for arbitrary Q ,  it is possible to  derive closed-form 
expressions for these quantities when Q is very large or very small. In  fact, we shall 
show that the capture tubes thereby obtained are in very close agreement with those 
computed via our simplified numerical solutions in $ 2  as well as with Tutty’s finite- 
difference solutions except for a relatively narrow intermediate range in Q which lies 
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roughly between 0.1 and 1.0. Specifically, we shall derive in $3.1, the asymptotic 
solution for Q >> 1 using a superposition that consists of a linear shear flow and a 
Stokes sink in a half-space, while, in $3.2 we shall examine the Q < 1 limit using a 
superposition of a linear shear flow, which neglects the disturbance velocity in the x- 
direction over the hole, and a Sampson flow through the hole (i.e. the same simplified 
profile considered in $2). But, since for Q < 1, this approximation appears 
questionable in view of the fact that the disturbance velocity produced by the shear 
flow past the orifice opening becomes of comparable magnitude with the Sampson 
flow as the plane z = 0 is approached, we shall undertake in $3.3 a more rigorous 
analysis in which the recently derived exact solution of Davis (1991) for the shear 
flow past an orifice is used to analyse the capture tube boundary in the vicinity of 
the opening in the smal1-Q limit. It will be shown that the simplified analysis in $3.2 
provides a very good approximation to the upstream capture tube boundary despite 
the fact that the detailed velocity field over the hole is poorly described. Finally, we 
shall examine in $3.4 the limits of applicability of the various approximations by 
means of some numerical results. 

3.1. The case of strong suction 
It is not difficult to see that the cross-sectional dimensions of the capture tube along 
any (y, 2)-plane, sufficiently far upstream of the pore are monotonically increasing 
functions of Q and that as Q + 00 these dimensions become infinite relative to the 
radius of the side branch. This also follows from the fact that, far from the pore, the 
flow field is that  due to the linear superposition of a simple shear flow plus a flow due 
to a point sink a t  the origin of strength 27cQ. Indeed, as R+m,  the velocity 
components as given by ( 1 )  and (2) reduce to 

which indeed depicts the flow mentioned above. 
It is evident from (4) that the strength of the shear flow becomes. comparable with 

that of the sink flow if both z and R are of comparable magnitude O(Qi). This, in turn, 
leads to the transformation 

which reduces the equation for the streamlines to 

Hence, along a streamline, fj = az“ with u being an arbitrary constant parameter, 
and therefore, with 7 = -d/Z, we have that, in lieu of (6), 

This then is the equation for the streamlines in the ‘outer’ region whose linear 
dimensions are O(Q4). The solution of ( 7 )  has to match of course with that of the inner 
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solution which applies within an O( 1)  distance from the mouth of the pore where the 
flow is dominated by the suction velocity profile as Q +  co ; but as we shall see 
presently, knowledge of this inner solution is not required to leading order in our 
analysis for the purpose of obtaining the capture tube cross-section at upstream 
infinity. In  fact, the only pertinent information provided by this inner solution, 
which is required in the integration of (7) ,  is that the slopes of all the streamlines 
entering the pore range from plus to minus infinity, and indeed, as we shall show 
presently, the solution to  (7)  yields an excellent approximation for the capture tube 
streamlines everywhere, except in the immediate vicinity of the pore mouth, when 
Q >  1 .  

Before deriving the general solution of (7),  let us first consider the special case 
a = 0, i.e. the streamlines lying within the y = 0 plane. Then, for all the streamlines 
which end at 5 = 2 = 0, we have, on integrating (7)  with a = 0, that 

where - i / y o  equals the slope d5/d2 of a given streamline as z and x both approach 
zcro. But, in view of what was said earlier about the flow in the inner region, 
- co < yo < co. In  particular, yo + f 00 correspond to the streamlines approaching 
the origin along the negative and the positive x-axis, respectively. On evaluating the 
integral in (8) in closed form we then obtain that, for the dividing streamline in the 
y = 0 plane, 

+ x3 ] 3x 
z3 = 9 Q l r m  dy --3Q[2- - 

(x2+22)$ ( X 2 + 2 2 ) f  . (9) 

Consequently, as x+--co, the far upstream height of the capture tube dividing 
streamline in the plane y = 0 is Z - ,  = (12Q)i. In an analogous fashion, we can easily 
show that, when a + 0, the dividing stream surface is described by 

1 x3 + 23 = 3Q [2- 3x 
( i + a 2 ) 2  (x2+y2+22)i (x2+y2+22)f ’ 

and that, as x + - 00, reduces to 

where 

It should be noted that (i i) ,  describing the shape of the capture tube cross-section 
a t  upstream infinity, is independent of the size and the geometry of the pore, and 
thus is of general utility. 

The dividing streamlines in the y = 0 plane given by (9) (solid lines) are compared 
in figure 4 ( a )  with our numerical results using the method described in $2 (symbols). 
It is seen that the agreement is excellent almost everywhere for Q 2 10 and that even 
for smaller values of Q, e.g. Q = 1, the deviation occurs only in the immediate 
vicinity of the pore entrance. In  figure 4 ( b )  the cross-sectional shapes of the capture 
tube obtained using (10) (solid lines) are compared with the numerical solution in $2 
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FIGURE 4. Comparison of the asymptotic results for large Q with the numerical ones. (a) Dividing 
streamlines in the y = 0 plane (symbols, numerical solution of ( l ) ,  ( 2 )  and (3 ) ;  solid lines, 
asymptotic). ( b )  Fluid capture tube cross-sections for Q = 10 (symbols, numerical solution of ( l ) ,  
(2) and (3) ;  solid lines, asymptotic). 

(symbols) for Q = 10 a t  different locations x. Clearly, except near the wall ( z  = 0) ,  the 
two solutions are close to each other even for positions just over (x = 0) and just 
upstream (x = - 1) of the pore mouth. This agreement suggests that for Q > 1 the 
very simple analytical formulae (9) and (11) will provide a surprisingly accurate 
approximation for the capture tube shape at  all upstream locations. 

We also note that the neglected terms in this asymptotic analysis are at least 
O(Q-i) smaller than those which were retained and hence the relative error will vanish 
as &+a. 
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3.2. The case of weak suction 
It is important to point out that the simplified velocity profile given by (1) and (2) 
cannot really be justified in the low-Q limit since the disturbance to the simple shear 
flow created by the presence of the hole dominates when z+O and 0 < R < 1.  
Nevertheless, we shall retain this simplified velocity profile in this subsection because 
the solution of the simplified set of equations for the streamlines will provide us with 
useful insight into how the correct asymptotic analysis should be performed in the 
next subsection for the exact flow pattern. I n  addition it will be seen that the 
predicted shapes of the capture tube cross-sections using this simplified profile will 
be almost identical to those obtained from the much more elaborate analysis using 
the full solution for the simple shear flow past an orifice or pore. 

Now, returning to (1) and (2), we note that, when Q is small compared with unity, 
the flow field associated with the Sampson solution is negligible in strength relative 
to that of the shear flow unless z + 0 and R is O( l ) ,  i.e. near the entrance of the pore 
where both flows, although weak, are of comparable magnitude. Thus, the 
streamlines remain horizontal and parallel, to the first approximation, except near 
the entrance of the pore. 

To obtain the dimensions of this ‘inner’ region, we observe from (1) and (2) that 
V,  = z{l + O(Q)} while V, and V ,  are both O(Q). Hence, in view of (3), the equation for 
the streamlines within the ‘inner’ region is 

O ( Q )  since V,+O(Qz) as z+O. 
dx 

Hence the appropriate scaling in the inner region is 

z =  zQ-i, R = R ,  

in terms of which the equation for the streamlines reduces to 

where 

-3(1-R2)i for 0 < R  < 1 
. (14) for R 2 1 

V , ( O )  - = ---(Rl-R2) 3 5  
4R 

Thus, on integrating (13), we have that y remains constant along a streamline which 
enters the pore, while 

( 1 - , 2 ) f  

$? = 3Jz (1-x2-y2)fdx for -(1-y2)i < x < (1-y2)i, 

since z=O when x=(1 -y2) f ,  - l < y < l .  Also dz/dx=O when x < - ( l - y * ) i .  
Consequently, when x < - (1  - y2)i and therefore a t  upstream infinity, the cross- 
section of the capture tube is given to leading order (i.e. with an error of O(Q:)) by 
its shape a t  the upstream edge of the pore: 

(1-,2)f 

Z2 = ZZ, = l2QJ (1-x2-y2)fdx = 37cQ(1-y2) for x < -(l-y2)i .  (15) 
0 
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FIGURE 5 .  Comparison of the far upstream cross-section shapes using different velocity profiles 
at the pore mouth for small Q (solid line, using (15); symbols, using (17)). 

It should be noted that, in contrast to the case of strong blowing where the shape of 
the capture tube cross-section is independent of the shape and dimensions of the 
pore, here the functional relation between 2-, and y is dependent on the size as well 
as the geometry of the pore, since thc latter affects the suction velocity profile at 
z = 0 which in turn enters into (13), i.e. the equation for the streamlines within the 
inner region. 

This analysis pertains of course to the case of flow into a circular orifice of zero 
thickness where the Sampson solution accurately represents the axial velocity at the 
pore entrance. On the other hand, when the pore has a length greatter than about half 
its radius, then, as mentioned earlier, Dagan et al. (1982) have shown that the axial 
velocity at z = 0 is given to high accuracy by the arithmetic mean of the Sampson 
and Poiseuille profiles. Consequently. (14) should be replaced by 

-;[3( 1 --R2)i+4( 1 -&*)I for 0 < R < 1, (16) 
- v (0) t ( 0 )  = L = 

z2 = z!, = ~ [ $ x ( ~ - y ~ ) + ~ ( ~ - y ~ ) ~ ]  for x < -(1--y2);. (17) 

Q 
and, in place of (15), one obtains for the capture tube cross-section 

The cross-section shapes upstream of the pore mouth, as given by (15) and (17), are 
compared in figure 5 and are seen to be practically identical. This indicates that, even 
when Q < I ,  the upstream capture tube shape is relatively insensitive to the velocity 
profile a t  the pore mouth. 

3.3. The influence of the disturbance $ow past the hole 
The results just  derived, and specifically (15) and (17), need to  be more carefully 
analysed, however, since, as mentioned in the previous subsection, the use of (1) and 
(2) is of questionable validity in the 1ow-Q limit because a simple shear flow past a 
hole will create a disturbance velocity along the x-direction which will remain O(1) 
as z + 0 and therefore should enter into the equation for the capture tube surface. To 
examine the effect of this disturbance, we shall utilize the exact velocity profile for 
the simple shear flow past a circular hole in a plane wall, recently derived by Davis 
(1991) and summarized in the Appendix. 
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We note that, as z+O, 0 < R < 1, and in the absence of any suction, 

and, therefore we obtain, in lieu of (13) that, as Q + 0, 

dz xz 9ltQ dy 
- = -=--- 

dx 1-R2 2 ’ dx 

where also included is the suction component c(0) as given by (14). The streamline 
which intersects the downstream edge of the orifice a t  z = 0 and x = + (1 - y$, for 
0 f yo f 1, is then given by 

with y = yo. 
We see from (20) that z is now O(Q) for 0 < R < 1 rather than O(Q$ as obtained 

in (15) or (17).  In addition, when x --f - ( I  - yi);, V, and V,, as given by (18), become 
comparable in magnitude when r = 11 -RI is O ( z )  and therefore, in view of (20), both 
z and r become O(&. In fact, within an O(Q$ distance from the rim R = 1, all three 
velocity components are of O(ri ) ,  and hence O(Qi)), and therefore large compared to 
the suction velocity which is of O(Q). Also, one can show that in this region ah/+ 
is of O(r;) ,  and therefore O(Q$ smaller than either aV,/az or aVR/3R. Thus the flow 
within an O(@) distance from the rim is effectively two-dimensional in the (z,R)- 
plane. Moreover, in this region the velocity components V,  and V, must conform to 
the local solution of the Stokes equations for the two-dimensional symmetric flow 
past the trailing edge of a flat plate, whose stream function Y for z 2 0 is given by 
Weinbaum (1968) : 

Y = -1/2p~{sin!B+sin~B}cos~, with B = tanp1(:), p = ( r2+z2) f ,  (21a) 
37t 

where the proportionality constant was determined by requiring that, in view of (18), 

Y+-- ‘2rir9cosp, 
3K 

as 8+0. 

Using (20) and (21b), we also find that, as (1-R2)i--f0, the capture tube surface 
streamlines are given by 

But, as O + K ,  we have from (21a) that 

Y=-~n&(1-yy,2)cos~. 

Icosp for R > 1,  ‘2 3 4 2  22 Y-t--r~(lt-B)2cosp = 
37t 3~ (R- 1)s  

and since, from continuity, these last two expressions must be equal to each other, 
we have, along the surface of the capture tube, 

z = tx(R2- 1);@(1 -y$ as R+ 1 .  (22) 
Also, y has remained equal to yo. 
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Finally, as  R is increased beyond the rim, the undisturbed linear shear flow 
velocity, which up to now had played no role in the present analysis, attains 
increasing importance. Integrating the streamline equations using the velocity 
components (A 3).  one can show that. for R > 1. 

(23a) 

(236) with 

where we have imposed the conditions that ,  as K +  1, the above expression for z 
reduces to  ( 2 2 )  and tha t  y = yo. Numerical evaluation of the first integral in (23a) 
gives that ,  as R + co, y + cryo where CT = 1.10. In  addition, since V, + z as R + co, the 
integral of z over the capture tube cross-section far upstream must be equal to 2nQ. 
Thus, one obtains from (23b) 

~ ( t )  = 37ct2(t- 1);- 3t’(t - 1 )tsin-l (i) + 3t2 + t ,  

which is identical t o  (15) except for thc shape factor cr = 1 . lo.  Therefore, the capture 
tube cross-section is again an ellipse. but with a slightly different eccentricity. We 
can conclude, therefore. that  the details of the flow over the hole have surprisingly 
little effect on the upstream capture tubc boundary even in the 1ow-Q limit, and tha t  
the simplified velocity field used in ( 1 )  and (2) provides an approximation which is 
more than adequate. 

We next consider the flow past a side pore of finite length. In  the absence of 
suction, the disturbance flow velocity has the same dependence on the angle p, as in 
the case of flow past an  orifice in that 1; and VR are proportional to  cosp, while 5 is 
proportional to  sinp,. In  addition, me find from Tutty’s numerical solution that .  a t  
z = 0, the x-component of the disturbance velocity can be accurately represented by 
means of 

V,(x, y, 0) z 0.16( 1 -K2)’ 544 for 0 < R < 1 .  ( 2 5 )  

where we have chosen the exponent to cqual 0.544 in order to  ensure that. as R + I .  
the form of VJx,  y,0) be compatible with tha t  of the known local solution of the 
Stokes equations for flow past a 90” blunt-based trailing edge (Wrinbaum 1068). I n  
addition, the fact that  Vz(x, y. 0) is essentially a function of R alone implies tha t  
V y ( x ,  y, 0) vanishes. On the other hand, Q(x,  y, 0) is now finite and is an  odd function 
of x. Hence, in the 1ow-Q limit, we obtain, in lieu of (19), that  

where QK(0) is the suction flow profile at the pore entrance given by (16) and the first 
two terms on the right-hand side are obtained from a Taylor series expansion of 
K(x,  y, z )  about the plane z = 0 and from application of the continuity equation. 

It might appear at this stage that  the integration of (26) would encounter serious 
difficulties because. in the neighbourhood of the pore entrance, dyj’dx = Vy/Vz = O ( z )  
along a streamline and thus does not vanish as Q-0. Therefore, for 0 < K < 1. a 
given streamline is no longer confined to lie within an ( x ,  z)-plane as was the case for 
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the orifice. and y no longer remains equal to y,. Fortunately, we sec from Tutty's 
(1988) numerical solution that, although FL(.z, y, 0) is finite, it is an order of 
magnitude smaller than V,(x, y, 0) everywhere except near the rim R = 1 where both 
vanish a t  the same rate. Thus, even though the separation streamlines do not detach 
a t  the trailing edge when Q = 0 (Weinbaum 1968; Tutty 1988), they remain 
everywhere close to the surface z = 0 and therefore, dyldx, although not zero. will be 
small along any one of them. In turn, this implies that  letting y = yo in (26) should 
constitutc an acceptable approximation. 

Before proceeding, let us examine the local solution near the rim with which the 
solution of (26) has to  match. We have (Weinbaum 1968) that, by analogy with (21a) ,  

Y = -Bprn{cos m(8 -in) + cot ($n) cos [(m - 2 )  (8 - ~ T C ) ] }  COST + O(p") ,  ( 2 7 )  
with m = 1.544, where the neglected term with n = 1.91 describes the lowest-order 
antisymmetric component of the no-suction solution. Although this term is required 
to determine the separation streamlines beneath the trailing edge, the O(prn) term in 
(27 )  dominates the flow along the plane z = 0 as p + 0 and hence the influence of the 
antisymmetric solution can be neglected for the purpose of this analysis. 

The coeficient R in ( 2 7 )  can be found by requiring that dY/paO become equal to 
-0.16 x 2"-'p"-' cosp, as 8 +0. Therefore, on noting that, since V,(x. y, 0) is odd in 
z and in view of (27 ) ,  

where C is an O( 1)  numerical constant which need not be determined. We then obtain 
on integrating (26) that, as x+- (1 -y$ and with rn- 1 = 0.544, 

Cr Q [ g (  1 - y:) + !( 1 - y:);] 
0.16( 1 -R2)rn-' 

Z-f  (1 -R2)m-1 + 

Finally, by repeating the steps of the earlier analysis in connection with the problem 
of flow past an orifice, we can easily show that the cross-section of the capture tube 
at  upstream infinity is given by 

where the value of can be obtained, as was done earlier with the quantity cr, 
through knowledge of the disturbance to the simple shear flow created by the hole. 
Although, the solution for this disturbance is not known, it appears safe to assume 
that cannot differ all that, much from 1.10, as indicated in fact by Tutty's numerical 
solution for Q = 0.005 shown in figure 3. Thus (17) and (28) are practically the same. 

We can see then that, once again, the use of a more exact expression for the 
velocity profile has led to a change in the shape of the capture tube cross-section at 
upstream infinity which is negligible for practical purposes. Hence, in what follows, 
wc shall proceed with our analysis on the basis of the simplified form for the velocity 
as given by (1) and ( 2 )  even when Q is small. 

3.4. Discussion of the asymptotic expressions 
In the previous subsection we have derived asymptotic expressions for the shape of 
the upstream capture tube cross-section when Q becomes either very large or very 
small. Specifically, we have shown that (1 1) applies when Q + 00 irrespective of the 
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2-, values in the y = 0 plane 

50 
10 
5 
1 
0.5 
0.17 
0.100 
0.050 
0.010 
0.005 
0.001 

8.40 
4.87 
3.84 
2.17 
1.68 
1.10 
0.873 
0.643 
0.302 
0.215 
0.0969 

8.43 
4.93 
3.91 
2.29 
1.82 
1.27 1.27 

0.971 
0.687 
0.307 
0.217 
0.0971 

8.41 
4.49 
3.86 
2.18 
1.68 
1.10 
0.872 
0.641 
0.300 
0.214 
0.0967 

TABLE 1 .  Comparison between numerical and asymptotic results for the capture tube heights in 
the y = 0 plane at upstream infinity 

geometry or the dimensions of the hole, while as Q-0, we have (1.5) or (24) for the 
orifice and (17)  or (28) for the pore with very little difference amongst them. 
However, since the intersection of (15) and ( 1 1 )  in the plane y = 0 occurs a t  

16 
3n3 

Q = - x 0.17 ,  2-, 1-27> 

we can estimate the shape of the far upstream capture tube by means of (15) or (17)  
(with little difference between the two) when 0 < Q < 0.17, and by means of ( 1 1 )  
when Q 0.17. The results in the previous subsection for Q + 1 can also be used to 
explain why our far upstream capture tube shape for Q = 0.005 in figure 3 agreed so 
well with that computed by Tutty even though, a t  this low suction rate, this flow 
field a t  the pore mouth differs drastically from that employed in our simplified 
analysis, which led to (15). 

The results of our numerical solution discussed in $ 2  are compared in table 1 with 
the predictions given by two of the asymptotic expressions, (11)  and (15). It can be 
seen that, over the appropriate range of Q as defined by (29), the respective 
asymptotic expressions are in close agreement with the numerical values for the far 
upstream capture tube height 2-, in the y = 0 plane with a relative error of less than 
2 % when Q < 0.025 or Q > 2.5. In fact, as is evident from this table, the asymptotic 
solutions ( 1  1)  and (15) always overpredict the capture tube height, a t  y = 0. Thus i t  
is possible to represent the numerical results by means of the simple interpolation 
formula 

where 2, = (12Q)i and 2, = (3nQ)f are the two asymptotic expressions for 2-, in the 
y = 0 plane, given by ( 1 1 )  and (15), respectively. As is also shown in table 1,  the 
values for 2-, computed by means of (30) are in exceptionally close agreement with 
those of our numerical solution for all values of Q with a maximum relative error of 
only 0.4 %. 

It i s  important to point out that  although the numerical values of 2-, in the y = 0 
plane fall everywhere slightly below those given by the appropriate asymptotic 
expressions even in the intermediate range when Q is neither very large nor very 
small, the cross-sectional shape of the capture tube changes markedly from one limit 

2-, = (Z:+Z:)"", n = -4.67, (30) 
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FIGURE 6. The variation of the cross-section shape of the fluid capture tube with Q and comparison 
with the asymptotic results (symbols, numerical solution of ( l ) ,  (2) and (3) ; thin line, using (15) ; 
bold line, using (11)). (a) Q = 0.005; ( h )  Q = 0.05; (c) Q = 0.172; ( d )  Q = 1 and Q = 10. 

to the other. Interpolating between the curves in figure 6, one observes that, when 
Q < 0.1 this cross-sectional shape is accurately represented by the weak suction 
asymptotic solution, (15), i.e. it  is an ellipse which becomes more and more oblate as 
Q decreases while, when Q > 2,  the shape corresponds to that given by the Large 
suction asymptotic solution, (11). In  the intermediate range of Q ,  however, the cross- 
sectional shape is not well represented by either asymptotic formula. This suggests 
that although the asymptotic solutions can accurately predict the capture tube 
height in the y = 0 plane even in the intermediate range of Q ,  the numerical solution 
in 92 is still required to adequately describe other phenomena related to the capture 
tube shape in this range of Q ,  such as the plasma skimming effect which will be 
discussed in the next section. 

4. Fluid skimming effect 
Now let us consider a suspension of spherical particles of radius a and of uniform 

concentration C-, flowing under shear past a wall with small pores. The suspension 
is assumed to be so dilute that the flow field, the streamlines and the fluid capture 
tube will remain practically the same as described in 992 and 3 for a pure fluid. 
However, for the case of a suspension, thcre exists a particle-free layer near the wall 
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Fluid capture tube 

Particle-free layer Side view of the 
fluid capture tube 

FIGURE 7 .  Diagram showing the plasma skimming effect. 

for z < a and x < - (1  - y2)i, as indicated by the shaded region in figure 7 .  Then 
within the capture tube, whose total flux through the pore is 2nQ, the part from the 
shaded region, whose flux is denoted by 2nQa, does not carry particles. Hence, if the 
particle size a is comparable with the capture tube height, tho average particle 
concentration at the pore exit, Ce, will be lower relative to the far upstream value 
C - ,  even if the hydrodynamic interaction between the particles and the boundary is 
neglected. This hydrodynamic interaction will be considered in Wu et al. (1991); but, 
for the pure fluid skimming effect treated in this section, the particles will be assumed 
to move with the average velocity of the undisturbed fluid which is displaced by their 
volume. In the microcirculation this fact is believed to be largely responsible for the 
well-known observation that blood which is discharged from a tiny branch vessel will 
contain a smaller population of cells and thus be richer in plasma. This is usually 
called the plasma skimming effect, but since our discussion is not limited to  the 
microcirculation, this effect will be referred to in this paper as fluid skimming. 

It is evident from figure 7 that mass conservation for the particle phase requires 
that 

For a general given value of Q, Q, must be computed numerically based on the 
capture tube cross-section shape and the fluid velocity at a far upstream location as 
described in $2. However, for the large- and smal1-Q limits, closed-form results can 
be obtained from the asymptotic analytical solutions just  presented in $3. Thus, for 
the case of small suction (Q < l ) ,  using (15) for the capture tube shape (see figure 8a)  
and letting V, z z at far upstream locations, we have, for a < (3xQ);, that  

2x(Q-Qa) = ~ ~ ~ r d z d y  = 3xQy,-nQy~-a2y,, 

where y a  = [1-(a2/37c&)]i. On the other hand, if a > (3xQ)f, then the whole capture 
tube falls within the particle-free layer and thus the discharge fluid from the pore will 
contain no particles at all. Hence we obtain for the smal1-Q limit and, after making 
use of the above expression for ya, that  



Fluid skimming and particle entrainment 19 

FIQURE 8. Diagram illustrating evaluation of the flux in fluid capture tube: 
(a )  small suction case; ( b )  strong suction case. 

At the other extreme, that of strong suction (Q % i ) ,  we use (11)  for the capture tube 
shape (see figure 8 b )  to obtain l;2 J~;cp,m 1 

2n(Q-Q,)  = 2 ( r  sin 0) r dr  dB 

= 2nQ-4Q8, + 2Q sin ( 2 4 )  -3z3 cot 01, 

where 8, = sin-' (a3/12Q)a. When expanded into Taylor's series in powers of (a3/12Q)' 
the above expression becomes in the large-& limit 

C e- 
c, (33)  

where the third term on the right-hand side is as indicated because, as remarked in 
$3, the relative error in the asymptotic strong suction analysis, and therefore, in the 
expression for 8, given above is O(Q-a). 

Figure 9 depicts the variation of C,/C-, with the side branch flux 2nQ and the 
particle radius a. It can be seen that our numerical results approach those of the 
asymptotic solution, (32)  or ( 3 3 ) ,  very rapidly as 9-0 or Q +  CO, respectively. 
Furthermore, for any given value of Q and of a,  these two asymptotic expressions 
when combined provide a reasonable estimate for C,/C-,. In  fact, the values of 
C,/C-, computed from the numerical solutions lie invariably below the asymptotic 
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FIGURE 9. The fluid skimming effect (solid lines, numerical results using (31); dashed lines, using 
(32) ; dotted lines, using (33). Starting from the top are curves for a = 0.10,0.25,0.50,0.75 and 0.90, 
respectively. 

expressions which therefore serve as the upper limit. It is also seen that when the 
particle size a is fixed, C,/C’-, increases monotonically with increasing Q and that as 
Q increases indefinitely, C,/C-, will asymptote to unity for all a < 1 (i.e. the particle- 
free layer will constitute then only a negligible portion of the capture tube). 
Moreover, in the 1ow-Q limit, CJC-, will vanish as Q approaches Qmin = a2/3n, even 
though the particle diameter may be smaller than the pore opening (i.e. the whole 
capture tube will fall within the particle-free layer). This intriguing result suggests 
that for Q < 1 it should be possible to skim off the fluid phase without loss of 
suspended particles even when these are smaller than the size of the pores (e.g. for 
a = 0.5, the discharge will not contain particles when Q < 0.0265 if the hydrodynamic 
interaction between the particles and the wall is neglected). Finally, when Q is fixed, 
C,/C-, decreases with increasing a because of the thickening of the particle-free 
layer. 

5. Effect of non-zero pore length on the wall shear stress 
The analysis presented thus far has dealt primarily with the flou past an orifice of 

zero length and thus a simplified velocity field consisting of a simple shear flow plus 
a Sampson’s flow was utilized. But, as discussed in $ 3  as well as demonstrated 
numerically, the far upstream capture tube shape is altered only slightly if use is 
made of (16), i.e. the velocity profile a t  the mouth of a finite-length pore given by 
Dagan et al. (1982). Similarly, the use of the exact velocity for the shear flow past 
a pore in lieu of the undisturbed linear shear flow was found to have a very small 
effect. This means that the analysis in 94 for the fluid skimming effect remains 
essentially valid irrespective of the actual pore length. On the other hand, the 
presence of a non-zero pore length does influence the topology of the streamlines near 
the pore entrance and, in particular, the locus of the downstream attachment 
boundary for the capture tube. Recall that the numerical solutions in Tutty (1988) 
have shown that, when Q + 1,  this attachment boundary is locatcd at  a significant 
distance downstream from tthe edge of the pore. This fact is of considerable interest 
in studies concerning atherogenesis (Tutty 1988; Cornhill & Roach 1976), where 
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attempts have been made to relate the local wall shear and the location of the 
attachment point to the pattern of early lesion formation. In  this section we shall 
derive a closed-form asymptotic expression for evaluating the wall shear rate and use 
this expression to  determine the location of the attachment boundary contours. This 
simple closed-form solution will turn out to be surprisingly accurate for almost all &- 
values of practical interest. 

By taking the Fourier transform in x and y and the Laplace transform in z of the 
Stokes equations, it is possible to  show that the x-component of the fluid velocity in 
thc upper half-space z 2 0 may be expressed as (Sobey 1977 ; Tutty 1988) 

where R’ = ( x ’ ~  + y“): and 

Thus, once the velocity profiles a t  the pore mouth (R’ < 1,  z’ = 0) are given, it is 
an easy matter to  find the locus of the fluid streamline attachment boundary, defined 
by 7wa11 = p(i3V’/i3z),,, = 0. In Tutty (1988) the velocity profiles a t  the pore mouth 
were taken from his numerical results and the double integration in (34) was 
performed numerically. But, as we shall show presently, this numerical integration 
can be replaced by a simple and accurate closed-form expression. 

To this end, differentiating (34) we have that 

(35) 

where the velocity profiles VJx’, y’, 0) and VJx’, y‘, 0) consist of the superposition of 
an axisymmetric fluid suction into the pore and a shear flow past the pore without 
suction. For the axisymmetric suction, these profiles may be expressed in terms of a 
single radial velocity component a t  the pore mouth, VOR(R’), which is independent of 
cp’ : 

V,(x’, y’, 0) = VO,(R’) COST’, V&’, y’, 0) = PR(R’) sinv’. 

For the no-suction shear flow, Vx(x‘, y’, 0) is a function ofR‘ alone, which is accurately 
described by (25), and Vu(x‘, y’,O) may be taken to be zero for the reason indicated 
earlier. Numerical evaluation of (35) shows, however, that when Q 2 2, the 
contribution to the wall shear stress due to the no-suction shear flow becomes 
negligible compared with that arising from the axisymmetric suction and, therefore, 
the shear flow component can be omitted without affecting the results significantly. 
Furthermore, since the location of the attachment boundary lies only slightly 
beyond the edge of the pore for Q < 2, it  is reasonable to omit the contribution due 
to the no-suction shear flow for all problems in which the topology of the attachment 
boundary is of practical importance. Introducing this simplification, transforming 
the integrand of (35) into the cylindrical coordinate system (R’, v‘, z’) and performing 
the integration over qf analytically, one obtains 

6Q = 1 -- J ( R )  COST, 
x 

R > 1  
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where 

(R+R’)5 v“,(R‘) R - d j  

( 3 7 )  

J(R) = c{ (R2+Rt2)  [Go(k)-2G,(k)]-RR’[2Go(k)-4G,(k)+4G4(k~~] 

and G , ( k )  is defined as 

4RR‘ 
(R + R’)2 ’ 

k2 = 
cosntdt c (1  - k2 sinzt): ’ 

G,(k )  = 

These functions G,(k )  can be expressed in terms of the complete elliptic integrals of 
first and second kinds, K ( k )  and E ( k ) ,  by means of 

where k’ = ( 1  - k 2 ) i .  When k2 < lop4, the expressions given above become inaccurate 
owing to rounding-off errors and hence it is preferable to use the leading terms in a 
Taylor series expansion of the elliptic integrals for small k 2 .  This results in 

~ , ( k )  = ;.[I + 3 2 + 0 ( k 4 ) 1 ,  

~ , ( k )  = + ~ k 2  + o(k4)1, 
G J ~ )  = +qg+&ik2+0(k4)1.  

In the expression for J(R) ,  ( 3 7 ) ,  the velocity profile VOR(R’) has yet to be specified. An 
accurate solution for PR(R‘) has been obtained in the form of an infinite series in 
Dagan et al. (1982) and is shown in their figure 6. But, a careful examination of the 
streamline pattern in figure 3 of Dagan et al. (1982) suggests that, for a finite length 
pore, whose length is greater than half the pore radius ( L / c  > 0.3), the slope of the 
streamlines in the plane of the pore opening will be nearly the same as that for a 
Sampson’s flow on a judiciously chosen oblate spheroidal coordinate surface which 
lies upstream of the entrance. In addition, numerical tests have shown that the shape 
of the radial velocity profile can be accurately fitted by means of Sampson’s 
transverse velocity profile on the oblate coordinate surface h = 0.65, where h = 
(+(I?, + R, )2 -  1); and R,,  R, are defined following (2), provided the maximum velocity 
is scaled so as to satisfy the magnitude of the peak radial velocity in Dagan et al.’s 
solution. It is found that the fitting formula 

R’( 1 - R”) 
1.42 - R“ PR(R’) = l.15Q ( 3 8 )  

provides a simple but highly accurate approximation for the radial velocity profile 
in figure 6 of Dagan et al. (1982). 

When ( 3 8 )  for PR(R’) is substituted into ( 3 7 ) ,  the single integral (37)  can be 
evaluated numerically and the attachment boundary contour R = f (v) located by 
imposing the condition 7wa11 = p(i3V,/i3z),,, = 0. However, from ( 3 6 ) ,  one expects that 
R should become large as Q + co provided cos$ $: 0. Thus, for Q $ 1,  one can 
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P 
(deg.1 

K = (fQ cosp): 

R = (4Q COSp): 

0 Eq. (41) 
Numerical 

40 Eq. (41) 
Numerical 

R = (!jQcosp)~ 

Numerical 
R = (fQcosp); 

Numerical 

80 Eq. (41) 

89 Eq. (41) 

TABLE 2. 

Q = 2  

1.194 
1.199 

1.155 
1.161 

- 

- 
1.032 
1.032 

Q = 5  & = l o  
1.136 1.351 
1.367 1.545 
1.370 1.548 
1.063 1.264 
1.309 1.471 
1.314 1.474 
- - 

1.091 1.173 
1.096 1.178 

Q = 100 

2.403 
2.512 
2.513 
2.248 
2.365 
2.366 
1.551 
1.720 
1.722 

- - - - 

1.126 1.047 1.025 1.173 
1 .ow 1.002 1.009 1.178 

The attachment boundary contours R = f (p) 

Q = 1000 
4.273 
4.334 
4.335 
3.998 
4.064 
4.064 
2.758 
2.853 
2.854 
1.553 
1.722 
1.724 

evaluate the integral (37) and thereby derive a closed-form expression for the 
asymptotic behaviour of J(R) by expanding the functions G,(k )  as Taylor series in 
k2 followed by an expansion of k2 in R'IR: 

It is found that 

k2=- "'( I--+- 2R' R 3Rf2 R2 + O F ) ) .  R 

0.1748 0.1831 
R4 Re 

J(R) = -+- (39) 

Substituting (39) into (36) and applying the condition T , ~ ~ ~  = p(i3Vz/i3z)z-o = 0, one 
finds that the attachment boundary contour is described by 

which can be solved by iteration to yield an explicit solution for R as a function of 
v. 

Thus, one obtains after one iteration that 

R = ($Q coscp)~+0.262(!& cos~)-'+O(Q-$. (41) 
Although the asymptotic expressions (41) is derived under the assumption that 

Q +  00 and cosg, =k 0 so that R'/R < 1,  one finds that the solution to  7,a,, = 
,u(i3Vz/~z),,, = 0 using (41) is in surprisingly good agreement with the equivalent 
solution obtained from an exact numerical evaluation of J(R) for values of Q as small 
as Q = 2 in the range of 1cp1 < 80" (see table 2). In  fact, for Q 2 lo3 the first term in 
(41) deviates from the exact numerical solution by less than 3% for IcpI ,< 80" and 
about 10% for IcpI = 89". Considering that the attachment boundary contours 
converge to R = 1 as Ig,I --f 90" for all values of Q, the above agreement suggests that  
the very simple analytical expression, (41), can be used to accurately predict the 
attachment boundary contours for all cases of practical interest. 
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FIGURE 10. The streamline attachment boundary near the pore mouth (solid lines, our numerical 
results: circles, our asymptotic results using (41) ; squares, Tutty’s (1988). Starting from the centre, 
these curves correspond t o  Q = 2,5,10,25,50,100). 

Figure 10 shows our computed attachment boundary contours obtained from the 
asymptotic expression (41) (circles). These contours cannot be distinguished on the 
scale shown from our exact results as obtained by means of a numerical integration 
of J ( R )  (solid curves). Also plotted in this figure for comparison are Tutty’s 
attachment contours (squares) obtained from his figure 7. It is clear that the 
agreement is excellent for the entire range Q 2 2 and that the neglect of the no- 
suction shear component, which is included in Tutty’s finite-difference solution, is 
insignificant for these values of Q .  

6 .  Concluding remarks 
The results just presented can be applied directly to the blood microcirculation 

problem described at the beginning of the introduction because the discharge 
hematocrit H ,  and the feed reservoir hematocrit H ,  exactly correspond to the 
respective concentrations C, and C-, used in the last section. In  particular, although 
our analysis has been confined to a greatly simplified geometry and many other 
factors (e.g. the deformability of the cells and that of the vessel wall, the pulsatile 
flow condition, the hydrodynamic interaction between the cells in blood, etc.) have 
been omitted from consideration, the present model does provide the first 
quantitative theoretical framework for the fluid capture tube which can be used to 
elucidate phenomena related to the discharge hematocrit defect. For example, the 
classic experiment by Cokelet (1976), also cited by Chien et al. (1984) in their figure 
15, revealed that the ratio of H,/H, is dependent not only on the size of the cell 
relative to the pore diameter, but also on the flow rate in the sma.11 tube. Specifically, 
it was found that in a glass tube 8 pm in diameter, the value of H, , /H,  increased from 
0.32 to 0.53 when the mean red cell velocity increased from 8 pm/s to 800 pm/s. In  
this experiment, the feed reservoir was kept well mixed by a magnetic stirrer, which 
created a shear flow at the entrance to the glass tube that can be modelled by the flow 
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geometry in the present paper. The same qualitative dependence of the discharge 
concentration on the suction flow rate was also observed by Gaehtgens & Papenfuss 
(1979), whose results are also cited by Chien et al. (1984) in their figure 16. I n  this 
experiment, a suspension of blood cells was perfused through a cylindrical feed 
channel (with a diameter of 1.5 mm) at a constant perfusion rate of 30 mm3/s. When 
the suction rate through a capillary side branch (diameter = 6.3 pm) was altered 
from 0 to  mm3/s, the value of H , / H ,  was observed to increase from 0 to about 
0.3. It was also observed by Gaehtgens & Papenfuss (1979) that, when the flow in the 
feed channel was stopped, H , / H ,  became virtually independent of the suction flow. 
Surprisingly, little attention was paid in the past to the fact that although the only 
real difference between this experiment and that of Cokelet was that in the latter the 
feed reservoir was stirred, yet the results were so different. I n  general, the 
dependence of the hematocrit discharge defect on the suction flow rate has been 
attributed to the enhanced cell deformation a t  high shear rate, which, as pointed out 
by Chien et al. (1984), reduces the effective size of the cells. Our studies show, 
however, that cell deformation is not the only determining factor, because figure 13 
indicates that, even for rigid spheres, the same trend holds true owing t o  the 
dependence of the fluid and particle capture tube shapes on the suction flux into the 
pore. Moreover, our theory is also consistent with the experimental finding by 
Gaehtgens & Papenfuss (1979) according to  which, in the absence of flow in the feed 
channel and any stirring, the value of H , / H ,  was found to be nearly independent of 
the suction rate through the side branch. In  contrast, if the deformation of the cell 
a t  the entrance to the pore were the primary mechanism causing the discharge 
hematocrit defect, then one would expect this defect to decrease with an increase in 
the suction flow rate due to  the increased deformation of the cell. Thus, our theory 
provides a new explanation for the underlying mechanism that causes the discharge 
hematocrit defect to vary with the suction flow rate. 

Although the present theory can be rigorously applied only to  dilute suspensions 
of spheres in a simple shear flow, experimental studies summarized in our companion 
biological paper, Yan et al. (1991), have revealed that the primary effect of increasing 
the hematocrit concentration is to decrease the plasma layer thickness near the wall. 
Thus, if this thickness is known as a function of H,, the plasma skimming effect on the 
discharge hematocrit defect a t  higher values of H ,  can be estimated by replacing the 
rigid sphere radius a in the present theory by the measured plasma layer thickness. 
A second important correction that is required for analysing in vivo data in the 
microcirculation is that  the upstream velocity profile is not a simple shear flow, but 
a flow that closely resembles a Poiseuille flow in the parent vessel. In  Yan et al. (1991) 
it is shown that for the microcirculation in vivo the average value of Q, neglecting 
pulse and vasomotor constriction, is approximately 0.1 and that the present small- 
Q asymptotic solution can be used as the starting point of an accurate approximate 
theory to describe the changes in the upstream capture cross-section due to an 
upstream Poiseuille profile. This modified theory is then applied to  eatimate the 
variation in H ,  with Q a t  hematocrit concentrations typical of in vivo conditions 
using the experimentally measured relationship between cell-free layer thickness and 
H,, mentioned above. 

As noted at  the beginning of this paper, the biological problem described above is 
just one example of the many applications involving the flow of a suspension under 
shear past a boundary with small pores or side branches. The difficulty in theoretical 
treating such problems arises from the complexity of the background flow field as 
well as the difficulty in determining the hydrodynamic coefficients for the 
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particleboundary interaction that is required in order to quantitatively describe the 
particle screening interaction (cf. Wu et al. 1991). In the present paper a simplified 
mathematical model for the flow field and for the fluid skimming effect has been 
presented. Comparison with Tutty's exact numerical solution of the flow problem 
shows that our model yields reasonable results, with much less computational effort, 
for a wide range of suction flow rates. In addition, for large and small values of Q ,  
useful asymptotic expressions were derived in closed form for the shape of the 
capture tube cross-section. Finally, the particle concentration defect into the pore 
was computed and its dependence on the particle size and the suction flow rate was 
found to be in good qualitative agreement with the experimental results reported in 
the literature. 

It is hoped that our model and formulae will also prove to be of value in examining 
similar problems in other fields. 
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Appendix 
Consider the simple shear flow 

V'=z,  V , = V , = O  for 2 2 0  

past a plate having a circular hole with its centre a t  the origin, as in figure 1 but 
without the stem. The solution derived recently by Davis (1991) is as follows for 
2 2 0  V, = z +Llom ePkr (T- sink cos k )  (5- z )  Jo(kR) dk 

3n 

I cos k J z ( k R )  dk cos (%:I, ) 1 
V ,  = "[ 3n ~ o m e ~ k z ( ~ - c o ~ k ) J ~ ( k R ) d k ] c o s p , ,  1 
v = i[ 37c IOm e-kz (y - cos k )  J , ( ~ R )  dk] sin (%). J 

It can be shown that their asymptotic forms as z + O  become 
( a )  0 Q R < 1, z < (1-R): 

I 2 
37c 

V, = - - ( l -R2)k+O(z) ,  

22 R 
' 37c(1 -R2)t V = -  cosp, + O(z2),  

v, = O(z) .  I 
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( b )  R > 1, z < (R-1):  

v = -  1 sin (+) + 0 ( z 2 ) .  
37c R2(R2 - 1): 
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